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Abstract —A rigorous dyadic Green’s function formulation in the spec-

tral domain is used to stody the dispersion characteristics of signal

striplines in the presence of metalfic crossing strips.

A set of coupled vector integral equations for the current distribution on

the conductors is derived. Galerkirr’s method is then applied to derive the

matrix eigenvahse equation for the propagation constant. The dispersion

properties of the signal lines are studied for the two cases of finite and

infinite length crowing strips.

The effects of the structure dimensions on the passband and stopband

characteristics are investigated. For crossing strips of finite length, the

stopband is mainly affected by the period, the crossing strip length, and the

separation between the signal and the crossing strips. For crossing strips of

infinite length carrying tray cling waves, attenuation along the signal line

exists over the whole frequency range of operation.

I. INTRODUCTION

I N MICROELECTRONIC computer packaging, a prob-

lem of practical interest is the study of propagation

characteristics of microstrip lines embedded in a layered

medium in the presence of periodic crossing metallic strips.

The analysis of striplines and finlines with periodic

stubs has been studied by Kitazawa and Mittra [1], where

a technique based on the network-analytical formulation is

used. A slow-wave coplanar waveguide on periodically

doped semiconductor substrate has been carried out by

Fukuoka and Itoh [2]. Gu and Kong [3] used a quasi-static

approach to study single and coupled lines with capaci-

tively loaded junctions. The propagation characteristics of

signal lines in a mesh-plane environment has been pre-

sented by Rubin [4]. More recently, the propagation char-

acteristics of signal lines in the presence of periodically

perforated ground plane was studied by Chan and Mittra

[5].

An analysis of a width-modulated microstrip periodic

structure using a quasi-static approach is presented in [6].

A hybrid spectral-domain analysis for similar periodic

structures has been carried out in [7].

In this paper, a hybrid-mode analysis is used to study

the propagation characteristics of striplines periodically
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loaded with crossing metallic strips. The periodic crossing

strips are assumed to have finite or infinite length. A

dyadic Green’s function formulation for the periodically

loaded structure is derived. A coupled set of vector integral

equations for the surface current distribution is formu-

lated. Galerkin’s method is then applied to transform the

resulting set of integral equations for the current distribu-

tion into a determinantal equation from which the disper-

sion characteristics are obtained.

The propagation properties of one signal line and two

coupled lines in the presence of periodic crossing strips are

investigated. Numerical results for the passband and stop-

band characteristics are presented.

11. DYADIC GREEN’S FUNCTION FORMULATION

The geometrical configuration of the problem is shown

in Fig. 1, where M signal striplines located at z = ZW,
~=~,z,... , M, are periodically loaded with crossing

metallic strips having a period p. The crossing strips are of

width WC and length L,, and are located in the plane

z = z~+ ~. Both the signal lines and the crossing strips are

embedded in the same layer (1) having parameters (cl, PO).

In general, the electric field can be expressed in terms of

the dyadic Green’s function and the current distribution

on the strip surfaces as [8]

El(;) =i~p{~~~~l,(r,r’)~(r’) dV’ (1)
v

where ~[,( ~, r’) is the dyadic Green’s function when both

the observation point r and the source point r’ are located

in the 1th layer of the strati field medium. For z > z‘,

F[[(r, r’) I

(2a)
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Fig. 1. Geometrical configuration of s~~nal striplines periodically loaded with crossing metallic strips embedded in layer (0
of a stratified medium.

For Z < Z’, I zl=z+dl, z;=z’+dl, and

k,= iky i- jky

kf=k:+k~ k.= Ik$l

r,=kv+jy r,’ = ix’+ jy’. (3)

In (2), R\~ and RfiE1 are the reflection ~Oeffici~:nts Of

the TM mode and the TE mode at the upper boundlary of

the lth layer, and R~V and RfiE, are the reflection coeffi-

cients of the TM mode and the TE mode at the lower

boundary of the lth layer. They can be obtained recur-

sively as

where z, and z; are the local coordinates defined as (4b)
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where R~(l_ ~,

cients of the

and z = – d,,

and Rf(,+ ~, are the Fresnel reflection coeffi-

a mode across the interfaces at z = – dl _ 1

respectively. The explicit forms are

(5)

For our problem, only transverse currents ~ having no

z component exist; the transverse electric field (to z) El, in

layer (1) is thus given by

E,.(F) =i~P,~jdr::t(rro%(r;)d~” (6)
s

where ~~( r, r’) is the (2x 2) transverse (to z) part of the

dyadic Green’s function; it can be expressed in the k,

domain as

F:(r, r’) =
//

m dk~ei~’”(rs-r~)~~(k,, z, z’) (7)
—cc

where for z > z‘,

=f(k.>z>z’)

i

= 8v2k,=

“{

(e%zz, + R:E1eI~,,t2~,-Z,l) (e-~/S./+ R\EleLh:Zi)

(1- R~E[R~E[e2’klzh{)

“*[-:k.v ‘::1+(etk,, z, _ R~M zk[z(2h, –z,)“le )(e-’k/Zzf - R~~eZ’,=2;)

(~_ R:~R\~e2%k)

[ 1)

k; k: kXkY
.—

k~k: k k k:
(8a)

XY

and for z < z’,

j;(ks, z, z’)

i
——

8v2kl=

“{

(e-’~:z + R~E1el’,.’,)(ei’,,Zf+ R’fjE,e1JC12(2~I-Zi))

(~- ~:E,~;E,e2+k)

1

[

kj – kXkY
.—

k: –kk k:
1

+ (e-’/.~-yR~~e’~/:’/~ (Zl_/.Zl_ R~~ek,,(’h/-./))

(~- R~~R:’e’%’/)

[ 1)

k~ k: kXky
.—

kfk: k k k; -
(8b)

XY

The transverse electric field can be extxessed using

Floquet harmonic representation in the y direction as

where ~~P( r, r’) is given by

6~P(r, r’) = ~ =! fm dkX e’kx(’-x’)e’k’”( )-”)
n cc —m

where kYE = kyo + 2n v/p, and kYO is the propagation con-

stant of the dominant harmonic in the Floquet representa-

tion. We assume that we have M signal striplines and one

crossing strip within one period. Thus, J, can be expressed

as

(
Jm(x, y), xm–wm/z <x<xm+wm,/z,

~(x, y)= Z=z
m

o, elsewhere.

(11)

Substituting (11) into (9), we have

M+l w

El,(i) = iti~f(27)2 ~ ~ e“”’
~=1 n=—m

(12)

where

“./
p/2

dy’e-’kyn’~m(x’, y’). (13)
– p/2

The electric field El, given by (12) satisfies the boundary

conditions at the interfaces between the dielectric layers of

the stratified medium. Imposing the final boundary condi-

tion that the tangential electric fields vanish on the metal-

lic surfaces of the signal striplines and the crossing strips,

we obtain a set of vector integral equations for the current

distribution on all the metallic strips. Thus, we have

“im(kx>k,,.)=o> Xq– wq/2 <x <Xq+ wq/2,

–p/2<y<p/2, Z=zq, q=l,. ... M (14a)

~(kX,k,.)=O, – LJ2 <X < LC/2,

– Wc\2 < Y < WC/2, Z = ZM+l (14b)

where (14a) satisfies the boundary condition on the M

sismal strim. and (14b) satisfies the boundarv condition on
L –0 “

. . ., . .
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I
the crossing strip. The task is to solve $is set of vector

integral equations using the moment method to get the

dispersion relation.

III. NUMERICAL SOLUTION FCjR THE

DISPERSION RELATION ~

A. One Signal Stripline Loaded with Crossing Metallic Strips

In this section, we study the case of ode signal stripline

in the presence of periodical crossing stiips as shown in

Fig. 2. The signal stripline and the cr~ssing strips are

located in a dielectric layer bounded by two ground planes

and placed, respectively, at z = ZI and z = Z2.

To apply the moment method, we choose an appropriate

set of basis functions to represent the ~surface current

Jl(x, y) and JZ(x, y) as

N2 Nj

(15 Et)

where Jl(x, y) is the surface current on the signal stripline;

J2(x, y) is the surface current on the crossing strip; a,, bJ,

c,, and dj are the expansion coefficient+ and $1,(x, y),

f2J(~, Y), f3,(% Y), and f4J(% Y) are the ~basis functions”
The explicit forms of the basis functions are as follows:

~3, (x! Y)=~, (x, L.)(P/2T)~o[Y>wc) (16c)

f4, (x, Y) ‘~(x>Lc)Q(y, wc) ~ (16d)

where

,(
(l/q) sin(2jr&/q), ~

Pj(g, q) = – 71/2 <f < TI/2 (17a)

o, elsewherq

((p/’27r?f)cos(97t/7l), :

Q(t, q) = – ~/2 <~f< ~/2 (17b)

o, elsewhere

[

/cos(2jnf/q) J“,
q(&q) = q/2 <~( < ‘q/2

(17C)—

\o, elsewhere’i

The surface current on the signal striplide is basically of

the traveling wave type. Due to the perio@ic loading, the

basis functions on the signal stripline are chosen as a

superposition of space harmonic modes. On the crossing

strips, the surface current is basically of the standing wave

type, and the phase variation along the y qlirection on the

crossing strips can be neglected.

Let }J(kX, q), &kPn, q), and ~(kX, q) ~be the Fourier

transforms of P, (x, T), Q(y, q), and ~.(x, ~), respectively;

z

YL x

U+ ccl

%“’’’””~”~
t3 C+l b

* . ..= =*2

r74m

a signal strip b crossing strip

Fig. 2, Geometrical configuration of one signal stripline periodically
loaded with crossing strips embedded in a one-layer medium.

we have

~ij(–l) ~‘1 sin (kXq/2)

2[(kXrI/2)2-( j~)’]

==-~J(-kX, q) (18a)

=~[.lo(kxTJ/2-jn-)+.To(kXq/2+ jm)]

=q-kx,q) (18c)

where Jo(a) is the Bessel function of the zeroth order,

~J(kX, q) is an odd function of kX, ~ (kX, q) is an even

function of kX, and Q( kv., q) is an even function of k,,..

When kXq/2 approaches t jv, FJ(k., TJ~ approaches

+ l/(4ri); when k,.q approaches + T, Q(kym, q) ap-

proaches l/(4r).

With these basis functions, the Fourier transform of the

surface current ~m(kx, ky.) can be derived as

i(kxjkyn) =i, =: N,a,~1,(kx7kyn)
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where ~J( kX, kY.) is the Fourier transform of ~J (x, y),

i =1,2,3,4. The explicit forms are

~l,(kx, kYn) = $.~~(kx, UJJ (20a)

F2J ( k. ~ kyn )=i$,.fO(kX, wl) (20b)

~3,(kx> ‘%)= w% %)?m ~c) (20C)

w. k.,.)= Q(f% ~c)mk ~c) (Zod)

where 81. is the Kronecker delta function. Substituting

(20) into (14), we have

~ &ny/~ dkXel~’x~~(kX, kY~, ZI, ZI)
~=—~ —m

[
. f ; a, F1,(kX, k,.)+ j S b, F~J(kx, k}),)

1

L j=~ ,=()

– wl/’2 < x < wl/2,

-+

=0,

– p/2< y <p/2, z = Z1 (21a)

~i?(kx>kyn,zz~zz )

– Lc/2 <X < LC/2,

– We/2 < y < We/2, Z = Z2. (21b)

Applying Galerkin’s method, we choose Ie - ‘kYkvPl(x, Wl)

(k = - N,, .0. ,N2) and je-’k~~~TO(x, w,) (k = - N,,

0... Nz) as testing functions for the signal stripline. Tak-

ing the inner product with (21a), we obtain 2( NI + Nz + 1)

equations. Similarly, taking the inner product of f~~, ( x, y)

(i=l,..., N3) and jflk(x, y) (k= 0,.. ., N4) with (21b),

we obtain another N3 + N4 + 1 equations.

After arrangement, we obtain the following matrix equa-

tion:

Each entity Z:”) in (22) is a submatrix; the explicit form

—J----
—xc Y z=

U+ec

%“’’’’’’’-’’’’’’’’’’’’’’’” “(/

a signal strip b crossing strip

Fig. 3 Geometrical configuration of two signal striplines periodically
loaded with crossing strips embedded m a one-layer medium.

of the elements is

with

X’”’(hk.,n) ‘%(-h -kyn)g;~(kx)kyn!zt>zm)
F,J(kX, kY~) (24)

(z~ forr=l,2

(

z~ forq=l,2
Zt =

forr= 3,4
Zm =

Z2 Z2 forq= 3,4

(25a)

(x forr=l,3

(

forq=l,3
~=

Y forr= 2,4
~= ;

for q = 2,4.

(25b)

The determinantal equation for the propagation con-

stant kYO can be solved by setting the determinant of the

coefficient matrix of (22) equal to zero:

det [Z(u, kYo)] = O. (26)

B. Two Symmetrical Signal Striplines Loaded with

Crossing Strips

In this section, we consider the case where two identical

signal striplines of width WI are located symmetrically at

(+ XC, z,) as shown in Fig. 3.

For the even modes, JnX(x, y) is an odd function of x,

and Jm”( x, y) is an even function of x. Therefore, the

surface currents can be expanded as

~2(X, y) =.!? : C,&’) (X, y)+j ; d,f~;)(x, y) (27b)
,=1 ,=0
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where the basis functions are

f~f’)(x, Y)= [PI(X‘Xc, u+)+ Pl(x +x,, wl)]e’ky~y

(28a)

fl~)(~,Y) = [To(X‘xc, WI)+To(x +Xc, wl)]eik~~y

(28b)

f$)(~> Y) = ~,(x, J5J(p/2n)To(y, yc) (28c)

f~;)(X>Y) ‘~(x, Lc)Q(y, we). (28d)

Following the same procedure as in the case of one

signal stripline by applying the Galerkin method, a deter-

minantal equation similar to (26) is obtained.

For the odd modes, JJx, y) is an even function of x,

and J~ Y(x, y) is an odd function of x. Therefore, the

surface currents are expanded as

$(X,-Y)‘-f x cJf#’)(%Y)+j i ~Jf$’)(x,Y) (’29b)
~=1 ,=0

where the basis functions are

fi~)(xj Y)= [~I(X–Xc,wl)– P,(x+ xc, w,)]e’k~~”

(30a)

fij’)(xj Y)= [To(X – xc, WI)– To(x +xc, wl)]e’ky~y

f$’KWO=q(x, Lc)(p/27r)To(y,wJ

f~;)(X, Y)=~(X, LC)Q(y, WC)

where

(

(l/TJ)cos [(2j-l)m&/q],

q(g, q) = –’q,/2<4<’q/2’

o, elsewhere

(30b)

(30C)

(30d)

(31a)

[

sin[(2j–l) n&/q] /{q/2 )2–g2,
~(.$,’q) = –TJ/2<,$<q/2 (31b)

[0, elsewhere,

Let ~ (kX, q) and ~ (kX, q) be the Fourier transform of

Uj(x, q) and L(x, q); then

~(k ~,= (2j-1)(-1)’cos( ~x~/2),=u(_k ~,
J ~>

(kxTJ)2- [(2j-l)7r]2 J “

(32a)

WXA=; [J O(W2-O-1V2)W)

–.lo(kx?l/2+(j-l/2)?T)]

=–q(–kx, q). (32b)

781

When kXq~2 approaches &( j – l/2)T, ~(k., q) ap-

proaches l/(4v).

C. One Signal Stripline Loaded with Crossing Strips of

Infinite Length

In this section, we consider the case where one signal

line is loaded by infinitely long crossing strips as shown k

Fig. 2 with L< * CQ.When the crossing strips are very long

such that reflections from the ends can be neglected, we

can assume traveling waves along it. So, we investigate the

possibility of the existence of such a mode of operation

and its effect on the propagation characteristics of the

signal line.

The surface current on the signal strip is OJFthe same

form as in the case discussed in subsection A of finite

crossing strips. For the crossing strips, we choose traveling

wave basis functions [9], [10] and some local basis func-

tions on the center to account for the effect of the presence

of the signal line. Hence, the surface currents are expanded

as

iv~ N2

J1(X, Y) =i E aJf/j)(x, y)+j Z ~JfJj)(x9Y)
J=–N1 ~=–N,

(33a)

L(x>Y) =1 ; cJfJ;)(x>y)+j : djfi;)(x, y) (Ssb)
‘=1 jeo

where the basis functions ffj)(x, y) and f~j)(x, y) are the

same as flJ (x, y) and f2J (x, y), respectively. The func-
tional forms of ff)( x, y) and ~~j’)(x, y) are

[

[~,(xh)-~,(-x,h )l(P/2~)~o(Y9w c)*
l<j<N3–1

~/)(X, Y) = [- Sm(k,x- n/2)+ iSm(k,x)

+Sm(–k,x –m/2)–iSm(–k=x)]

(P/277 )7’o(.Y, w.), j= Ns

(34a)

~RO(x, h) Q(y, we),

j=()

[RJ(xh)+R J(-x*h)]Q(Y,w c)*

jJ)(x,y) = ( l<j<N4–1

[- Sm(kex- m/2)+ iSm,(k,x)

–SM(-kex–n/2) +iS~(–k,x)] !2(,Y, w~)

\
j=N4

(34b)

where k. is assumed to be the propagation con,stant of a

single crossing strip of infinite length in the absence of the

signal line, RJ (x, h ) is the local basis function with width

2h, and S~($) is the traveling wave basis function with
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travdling wave basis function local basis function

traveling wave basis function
10cid basis function

fJ/J /f/

Fig. 4, The basis functions used for infinitely long crossing strips,
m=4, N3=N4=6

m/2 periods as shown in Fig. 4. The explicit forms are

[

sin k,(h – lx – jhl)/sin kch,

RJ(X, A)= (j-l) h<x<(j+l)h (35a)

o, elsewhere

(35b)

It will be shown that only a finite number of periods of the

traveling wave basis functions are sufficient for the conver-

gence of the solution. Any increase in the number of

periods of these basis functions will have a negligible effect

on the numerical results.

Let fl,( kX, w) and $~(kX) be the Fourier transform of

R,(x$ h) and S~($); then

k,e-’k’h(cos kXh -cosk,h)
fi, (kY, h)=– (36a)

rsinkeh(k~–k~)

When the value of kX approaches + k., ~J(kX, h) and

$l(kx) approach ( h/2n)e ~ &J’ and T im /4k,, respec-

tively.

With these basis functions, the Fourier transform of the

surface current J: ( kX, kYn ) can be derived as

N2

WLkyn)‘f573$%7%)
1=1

N.

where F,\t)( kX, k ,~) is the Fourier transform of ~~)(x, y),

i =1,2, 3:4. The explicit forms are

~$’)(kx, k>.)= 8J.~l(k.y, WI)

~Jj)(k.> k}.)= $n~o(k., wl)

~;)(kx7kyn) =fo(kyn~c)~3,(kx)

~J:)(kx, k,.)= Q(kv., Wc)&(k.x)

where

‘2 fif”)(kl, h),

l<j<N3–1

ke[~(k~- k~)]-’[(-l)m

~a,(kx) = { . i sin [kXn(m +1/2)/k,]

+(–l)”sin(mnkX/ke)

– zsin(kXn/2k. )],

\
j=N3

~l@(k X, h),

j=()

2~~e)(kX, h),

l<j<N4–1

&(kX) = { ke[~(k.: -k;)] -l[-(-l)”L

.COS [kX~(m +1/2)/k,]

+i(–l)~

(38a)

(38b)

(38c)

(38d)

(39a)

I.cos(mnkX/ke) +cos(kXn/2k,)– i],

j=fv4

where fl}e)(kX, h) and ~~O)(kX, h) are the even part and

the odd part of ~J(kX, h), respectively. It is observed that

X,, (– kX) = – A,,(kY), and 1.,(– kJ = &,(kX).
Applying the Galerkin procedure with the following

testing functions:

wl,(x, y)= Pl(x, wl)e-zkY (40a)

w2, (x, y)= To(x, wl)e-Z’~~ (40b)

W,j(x, y) =RJ(x, h)(p/2n)To(y, wC) (40c)

w,,(x, y)= RJ(x, h) Q(y, wC) (40d)

the matrix eigenvalue equation is obtained.

IV. NUMERICAL RESULTS AND DISCUSSION

By utilizing the symmetry properties of the dyadic

Green’s function, the basis functions, and the testing func-

tions, each matrix element in (22) can be reduced to an

integral over O < k, <m. In computing the integrals (23)

numerically, the path of integration in the complex kX
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Fig. 5. Dispersion relation of one signaf stnpline periodically loaded
with crossing strips of finite length, c, = 10, tl = t2 = 13= 0.2 mm,

p = 0.5 mm, WI = w, = 0.125 mm, L, = 2.3 mm, Nl =1, N2 = O, N3 = 4,
N4 =3, X: Nl=l, N2=0, N3=6, N4=5, au: upper bound of the
first stopband, u~: lower bound of the first stopband.

first higher order

knlrr waveguide mode.,
,4 kz – k; = (7r/d)z

n=—2y ,n=— 2
n=–1 , / n=—1

~=(1

~=1

-4 -2 0’2 4

Fig. 6. Interaction of Floquet modes with TEI (TMI ) parallel-plate

waveguide mode, k = co%, d = tl + tz + t~.

plane is deformed below the real axis to avoid the poles

corresponding to the waveguide modes [11].

Fig. 5 shows the dispersion relation for a single signal

line with crossing strips. Numerical computations were

performed with two different numbers of basis functions,

and the results were found to be the same up to three

decimal points. The basis functions used are given by (15).

For LC = 2.3 mm, the first stopband occurs in the fre-

quency range when 0.3162< kop/~ <0.3203.
Fig. 6 shows the interaction of an n = – 1 Floquet mode

with a TE1 [TMI) parallel-plate waveguide mode. For

frequencies above ~x, k ~ starts to have a large imaginary

part, giving rise to a higher order stopband. However, we

are interested in operating frequencies where kY is real

within the passbands below fx, and thus the region above

f. is of no practical importance.

Next, the effects of crossing strip length LC on the lower

and upper frequency bounds of the stopband are investi-

gated. The normalized frequency for the two bounds of the
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Fig. 7. (a) The effects of L, on the upper and lower bounds of the
stopbamd, c, =10, tl = t2= t3= 0.2 mm, p = 0.5 mm, WI = w, =

0.125 mm, NI = 1, Nz = O, N3 = 5, NJ= 4. (b) The effects of L<, on the

upper and lower bounds of the stopband, c, = 10, tl= t2= t:)= 10.2mm,
JJ=lomm, wl=’wC=0.125 mm, Nl=l, NJ=(J N3 =5, A~=4,

stopband is presented as a function of LC. The result for

p = 0.5 mm is plotted in Fig. 7(a). It is observed that both

bounds of the stopbaml are very sensitive to the crossing

strip length LC. This behavior is repeated when L, changes

by an approximately integral number of wavelengths. This

can be explained in the following way: The cross; ng strips

behave like open-circuited stubs periodically loa!ding the

signal line. The crossing strips will have capacitive or

inductive behavior depending on its length. At a certain

length of crossing strips, the behavior switches from being
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Fig. 8. The effects of WCon the upper and lower bounds of the stop-
band, c,=lO, tl=r2=r3=02 mm, p=0.5mm, wl=0.125mm. L,=
2,7 mm, Nl=l, N2=0, N3 =4, N4=3.

inductive (or capacitive) to capacitive (or inductive). This

switching occurs at LC = n Al, where Al is the wavelength

in the dielectric medium calculated at the center frequency.

At these lengths, the stopbands become very wide.

In Fig. 7(bJ the normalized frequency of the bounds of

the stopband is plotted as a function of LC with the period

p = 1.0 mm. Behavior similar to that in Fig. 7(a) is ob-

served, but the values of LC at which the switching of

frequency occurs are doubled.

In Fig. 8, the effects of the crossing strip width w, on the

stopband frequency bounds are investigated. The normal-

ized frequency at the bounds of the stopband is presented

for LC = 2.7 mm. As the crossing strip width becomes

smaller, the stopband becomes narrower.

In Fig. 9, we investigate the effect of the separations tl

and t3 on the stopband while keeping t2 constant. It is

observed that the stopband becomes smaller when the

separation is decreased, and when the separation is larger

than 0.2 mm, the upper frequency bound of the stopband

reaches a constant.

In Fig. 10, the bounds of the first stopband are plotted

as a function of the distance tlwhile fixing the separation

tl= t3= constant. It is observed that for Lc = 1.0 mm, the

separation t2affects the upper bound of the first stopband

significantly.

Fig. 11 shows the case of two coupled signal striplines in

the presence of periodic crossing strips of finite length.

The frequency bounds of the stopband are presented in

Fig. 11(a) and (b) for the even mode and the odd mode,

respectively, with p = 0.5 mm and L, = 1.7 mm. The basis

functions used are given by (27) and (29) for the even and

the odd mode, respectively. When the separation becomes

larger than L,, the stopband width of the even mode

34DE-3

335

330

325

<
~ 320

-!.?

315

310

305

300E-3

I I I I

WJu

I 1 I I

0.0 0.1 0.2 0.3 0.4 0.5

tl(= t3) ( mm )

Fig. 9. The effects of tl and Z3 on the upper and lower bounds of the

stopband, c, = 10, rz = O 2 mm, p = 0.5 mm, WI = w. = 0.125 mm,
.LC=l.O mm, Nl=l, N2 =0, N3 =2, N4=1

340E-3 I I 1 I
I

3fl:L
0.0 0.1 0.2 0.3 0.4 0.5

t~( mm)

Fig. 10. The effects of t~ on the upper and lower bounds of the

stopband. c, =10, tl= t3= 0,2 mm, p = 0.5 mm, WI = WC= 0.125 mm,
LC=l,O mm, Nl=l. NL=O, N3 =2, JV4=I,

approaches zero, but the stopband width of the odd mode
is still finite. This is because the odd mode has stronger

coupling between two signal lines than the even mode.

Fig. 12 shows the dispersion relation of a single stripline

in the presence of crossing strips of infinite length. The

basis functions used are given by (33). We’ choose the

traveling wave basis functions to have three periods. The

results using seven periods are also shown for comparison,
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Fig. 11. (a) The effects of X: on the upper and lower bounds of the
stopband, for two signal strrplines, c, =10, rl = tz = Zj = 0,2 mm, p =

0.5 mm, WI= WC= 0.125 mm, L, =1.7 mm, JVl =1, N2’ = O, N3 = 3,
N4 = 2. (b) The effects of :C on the upper and lower bounds of the

stopband, for two signaf stnplines, c, = 10, fl = tz = Zj = 0.2 mm, p =
0.5 mm, WI = w, ==0.125 mm, LC=l.7 mm, Nl=l, Nz =0, N3 = 3,

N4 = 2.

and it is found that the traveling wave basis function of

three periods is sufficient. The imaginary part of the

propagation constant is approximately a linear function of
frequency, and the magnitude can be as high as 1 percent

of the real part. This is due to the assumption that the

surface current along the crossing strips is a traveling

wave. Part of the power along the signal line couples to the

crossing strips, exciting a traveling wave surface current

785

0.8

r
I I I —

7
0.7

1./

/“

/

0.6
Irn(kvo )

0.5 x
k

$ 0.4
/~ Re(b)

0.3

0.2 /’”

,, ,/x

0.0 ———L———~—

0.0 0.5 1.0 1.5 2.0 2.5

Re(kVO)p/r, 10 x Im(kVO)p/r

Fig. 12. The dispersion relation for one signal stripline pe~iodically
loaded with crossing strips of infinite length, C,= 10, fl = C2= tj =

0.2 mm, p=2.5 mm, WI== W, =0.125 mm, h= A,/8, w= 6, X; m=

14.

flowing away from the signal stripline. This traveling wave

surface current guides some power away from the signal

line and hence reduces the guided power along the signal

line.

In this case,, the passband–stopband behavior which is

characteristic of periodic structures does not appear. The

wavenumber kYO has a nonzero imaginary part cwer all

frequencies. This is due to the power guided by the travel-

ing wave along the crossing strips. Around kvo = n n/p,

the separation between two neighboring crossing strips is

n A /2, where X is the wavelength of the guided mode. The

power carried by the crossing strips at these frequencies is

very small because tlhe current on the signal lime has

opposite phase on the two sides of the crossing strip. Also,

in this case, the higher order waveguide mode is not

excited.

V. CONCLUSIONS

A rigorous dyadic Green’s function formulation for the

periodic structure is derived to study the dispersion prop-

erties of single and coupled signal lines periodically loaded

with crossing strips. The passband and stopband character-

istics are investigated when crossing strips are of finite or

infinite length.

For crossing strips of finite length, the stopband proper-

ties are mainly affectedl by the period, the length of cross-

ing strips, ancl the separation between the signal and

crossing strips. Also, at higher frequencies, higher order

stopbands occur. For crossing strips of infinite 1ength,

attenuation alcmg the signal line exists over the whole

frequency range due to the power guided by the traveling

wave along crossing strips.
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