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Propagation Properties of Striplines
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Crossing Strips
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Abstract — A rigorous dyadic Green’s function formulation in the spec-
tral domain is used to study the dispersion characteristics of signal
striplines in the presence of metallic crossing strips.

A set of coupled vector integral equations for the current distribution on
the conductors is derived. Galerkin’s method is then applied to derive the
matrix eigenvalue equation for the propagation constant. The dispersion
properties of the signal lines are studied for the two cases of finite and
infinite length crossing strips.

The effects of the structure dimensions on the passband and stopband
characteristics are investigated. For crossing strips of finite length, the
stopband is mainly affected by the period, the crossing strip length, and the
separation between the signal and the crossing strips. For crossing strips of
infinite length carrying traveling waves, attenuation along the signal line
exists over the whole frequency range of operation.

I. INTRODUCTION

N MICROELECTRONIC computer packaging, a prob-

lem of practical interest is the study of propagation
characteristics of microstrip lines embedded in a layered
medium in the presence of periodic crossing metallic strips.

The analysis of striplines and finlines with periodic
stubs has been studied by Kitazawa and Mittra [1], where
a technique based on the network-analytical formulation is
used. A slow-wave coplanar waveguide on periodically
doped semiconductor substrate has been carried out by
Fukuoka and Itoh [2]. Gu and Kong [3] used a quasi-static
approach to study single and coupled lines with capaci-
tively loaded junctions. The propagation characteristics of
signal lines in a mesh-plane environment has been pre-
sented by Rubin [4]. More recently, the propagation char-
acteristics of signal lines in the presence of periodically
perforated ground plane was studied by Chan and Mittra
[5].

An analysis of a width-modulated microstrip periodic
structure using a quasi-static approach is presented in [6].
A hybrid spectral-domain analysis for similar periodic
structures has been carried out in [7].

In this paper, a hybrid-mode analysis is used to study
the propagation characteristics of striplines periodically
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loaded with crossing metallic strips. The periodic crossing
strips are assumed to have finite or infinite length. A
dyadic Green’s function formulation for the periodically
loaded structure is derived. A coupled set of vector integral
equations for the surface current distribution is formu-
lated. Galerkin’s method is then applied to transform the
resulting set of integral equations for the current distribu-
tion into a determinantal equation from which the disper-
sion characteristics are obtained.

The propagation properties of one signal line and two
coupled lines in the presence of periodic crossing strips are
investigated. Numerical results for the passband and stop-
band characteristics are presented.

II. Dyabpic GREEN’S FUNCTION FORMULATION

The geometrical configuration of the problem is shown
in Fig. 1, where M signal striplines located at z=z,,
m=1,2,---, M, are periodically loaded with crossing
metallic strips having a period p. The crossing strips are of
width w, and length L, and are located in the plane
z = z,,,,- Both the signal lines and the crossing strips are
embedded in the same layer (/) having parameters (¢, ptg).

In general, the electric field can be expressed in terms of
the dyadic Green’s function and the current distribution
on the strip surfaces as [8]

E(F) =iom[[[ Gu(r.r)-a(ryav ()

where G, (F, #') is the dyadic Green’s function when both
the observation point r and the source point r’ are located
in the /th layer of the stratifield medium. For z > 2,
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Fig. 1. Geometrical configuration of silgnal striplines periodically loaded with crossing metallic strips embedded in layer (/)
i of a stratified medium.
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where z, and z; are the local coordinates defined as

z;=z+d, z/=2z"+d, and
k, =Xk, + Jk,

ki=ki+ ki ko= 1k
. Sk, — k,
h(+k,)=—"——
(k) = =7
A +k —_— lzk.s +,\ks
U(— l:)— k[ks Zk[
r,=23Xx+Jy K =Xx"+ py’. (3)

In (2), R™ and R™F, are the reflection coefficients of
the TM mode and the TE mode at the upper boundary of
the /th layer, and R™ and R'%, are the reflection coeffi-
cients of the TM mode and the TE mode at the lower
boundary of the /th layer. They can be obtained recur-
sively as
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where R,_,, and R{,,, are the Fresnel reflection coeffi-

cients of the a mode across the interfaces at z=—d,_;

and z = — d,, respectively. The explicit forms are

RTE - k;,— k(lil): RIM  _ €1k, — 61k(1ﬂ_u1)z
ICES VI I+

ki, + ki €k ek,

)

For our problem, only transverse currents J; having no
z component exist; the transverse electric field (to z) E, in
layer (/) is thus given by

E,(7) = iep [ dr Gl (r, 1) 1) dS" (6)

where G}(r, ') is the (2X2) transverse (to z) part of the
dyadic Green’s function; it can be expressed in the k;
domain as
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The transverse electric field can be expressed using
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Floquet harmonic representation in the y direction as

= : *® ' p/2 = ’ i
E(7) =iop, [ ax' [ &Gl (r,r)) - 4(x)) (9)
— o0 -p/2
where (_f,?p(r, r’) is given by

= 29 = © ' /
G;p("’ r/) = Z f dkx elkx(xgx)elkyn()'f)')
Pt

'Eﬁ(kwkvn’z’z/) (10)

where k,,, =k ,+2nm/p, and k »0 is the propagation con-
stant of the dominant harmonic in the Floquet representa-
tion. We assume that we have M signal striplines and one
crossing strip within one period. Thus, J, can be expressed
as

Jm(x7y)7 xm~wm/2<x<xm+wm/2,

z=1z,

(1)

J(x,p)=

0, elsewhere.

Substituting (11) into (9), we have

2M+1 0
E[s(f)ziwp‘l(zﬂ) Z Z ek
m=1n=—o0

7 ke T (K ke 7 2,) (K K
— 0

(12)

where
r 1 1~k x
T (ke k,,) s __dxe

(13)

2 ,
fP/ dy/e-tky,,y m(x/,y/).
r/?

The electric field E,, given by (12) satisfies the boundary
conditions at the interfaces between the dielectric layers of
the stratified medium. Imposing the final boundary condi-
tion that the tangential electric fields vanish on the metal-
lic surfaces of the signal striplines and the crossing strips,
we obtain a set of vector integral equations for the current
distribution on all the metallic strips. Thus, we have
M+1 00

Y X et dk eg (ko kyn 7 2,)
-~ o0

m=1 n=—o0
-J:n(kx,kyn) =0, Xg= W, /2<x<x,tw, /2,
_p/2<y<p/29 Z=Zq, q=1»"',M (143)
M+1 5] 0 _
Z Z ezky,.)’/ dkxethxg;(kx’ kyn’ z, Zm)
m=1 n=—oc -

T (kyr k) =0, -L,/2<x<L,/2,

-w /2<y<sw,./2, (14b)

where (14a) satisfies the boundary condition on the M
signal strips, and (14b) satisfies the boundary condition on

Z= 2y
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the crossing strip. The task is to solve tlus set of vector
integral equations using the moment method to get the
dispersion relation.

III. NUMERICAL SOLUTION FOR THE
DISPERSION RELATION |

A. One Signal Stripline Loaded with Crossi‘h g Metallic Strips

In this section, we study the case of one signal stripline
in the presence of periodical crossing sttips as shown in
Fig. 2. The signal stripline and the crossing strips are
located in a dielectric layer bounded by two ground planes
and placed, respectively, at z=z, and z=1z,.

To apply the moment method, we choose an appropriate
set of basis functions to represent the' surface current

Ji(x, y) and Jy(x, y) as ‘

N Nz}
Jl(xﬂy):),c\ Z ajflj(x’y)—kyA Z bjf2j(x7y)
J=—MN j=~€N1

! (152)

N, N, i
B(x,9) =2 ¥ cfy (x,0)+ 9 L d fy,(x.y) (15b)
j=1 j=0 ;
where J,(x, y) is the surface current on the signal stripline;
J(x, y) is the surface current on the crossmg strip; a,, b,
¢, and d, are the expansion coeff1c1ents\, and f;,(x, y),
fo, (% ) £5,(x, ¥), and f; (x, y) are thelbasis functions.
The explicit forms of the basis functions a]re as follows:

fi, (%, ¥) = Pi(x, wy) en” (16a)
foy (6 0) =T m)es (16b)
fa,(xay)=P,(x,Lc)(p/2ﬂ)To(jy7wc) (16¢)
fo (x,9) =T,(x, L)Q(y,w,) | (16d)
where !
(1/n)sin(2jag /1), |
P (&)= —n/2<<n/2 (17a)
0, elsewherq
(p/27n)cos(7/n),
Q(¢,m) = —n/2<é<n/2 (17b)
0, elsewherei
cos @t/ m)(1/27— €,
L&) = ~n/2<k<n2 (70
0, elsewhere.

The surface current on the signal striplide is basically of
the traveling wave type. Due to the periddic loading, the
basis functions on the signal stripline are chosen as a
superposition of space harmonic modes. On the crossing
strips, the surface current is basically of th? standing wave
type, and the phase variation along the y direction on the
crossing strips can_be neglected.

Let P(kx,n), O(k e M), and T(kx,n) Ibe the Fourier
transforms of P (x, n), Q(y,m), and T(x, n) respectively;
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Fig. 2. Geometrical configuration of one signal stripline periodically
loaded with crossing strips embedded in a one-layer medium.

we have
1
P(kx,'ﬂ) /7)/2 dx eAlerPj(X,n)
-n/2
I 1)’ sin (k,n/2)
2k /2= ()]
:—Pj(_kx’n) (18&)
~ 1 2
! Q(kyn’ 77) =" dyeylky"yQ(y? 7’)
PY-ns2
cos (k,,m/2)
(kym)’=?
= 3(~kypom) (18b)
1
T(kom) = 5= [77 dve™ T, (x,m)
n/2

= Z[Jo(kxn/2-—jfrr)+Jo(kxn/2+ Jjm)]
=T (=km) (18¢)

where Jy(«) is the Bessel function of the zeroth order,
P(kx,n) is an odd function of k., T(kx,n) is an even
functlon of k., and Q(kvn, n) is an even function of k ,
When k.n /2 approaches + j, P > (kyom) approaches
+1/(47i); when k,n approaches + 7, Q(k}n,n) ap-
proaches 1/(4=).

With these basis functions, the Fourier transform of the

surface current J, (k, k,,) can be derived as

x> M yn
Jl(k)mkyn):)’é Z (kx’kyn)
J==M
N,
9 X bF(kky) (19a)
J=—N1
N, N,
F(ky k) =32 X ¢ Fy (ky k) + 9 X dF (k. k,,)
=1 J7=0
(19b)



780 1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 37, NO 4, APRIL 1989

where F, (k,,k,,) is the Fourier transform of [, (% ¥)s
i=1,2,3,4. The explicit forms are

B, (ko k) =8, P (ko wy) (20a)
Fy, (k. k,,) =8,Ty (k.. w) (20b)
Fy,(ky k) =To(kyuswe) B (K, L) (20c)
Fy, (kg kyp) = Qky w) Ty(ky L) (20d)

where §, is the Kronecker delta function. Substituting
(20) into (14), we have

0
Z ezk,,,.yfco dkxeik”"gg(er kyn, zq, Zl)
n=—o00 —®
Ny N
[XA Z ajFlj(kxakyn)-lhyA Z bJle(kx’ky")
J==N J=—M

+ gl (k,, K s 215 z,)

N, Ny
. l:‘)e Z c_/F3j(kx’kyn)+ yA Z de4j(kx’kyn):l =O’

Jj=1 =0
~—w /2 < x<w /2,

~p/2<y<p/2, (21a)

Z=1z

e}

o0 —
ik koxZT
Y € ynyf dk, e*=gf (k.. kyn’Zl’Zl)
— o0

n=—00

N, N,
[}?ﬁ Z ajFlj(kx’kyn)+)’}\ Z b/F2j(kx’kyn)}

J=—M J==MN

+ §1’7(kx’ kyn’ Z2» 22)

N, Ny
[f Z CJFSj(kx’kyn)+j> Z dJF4J(kX’kyn)} =0,
J=1 J=0

~L/2<x<L,/2,

-w,/2<y<w, /2, z=z, (21b)

Applying Galerkin’s method, we choose £e~""P,(x, w;)
(k=—Ny - ,N,) and e *wTy(x, w) (k=—N,,
-+-,N,) as testing functions for the signal stripline. Tak-
ing the inner product with (21a), we obtain 2( N, + N, +1)
equations. Similarly, taking the inner product of xf, (x, )
(i=1,---,N;) and Jf,(x,y) (k=0,---,N,) with (21b),
we obtain another N; + N, +1 equations.

After arrangement, we obtain the following matrix equa-
tion:

Zl(‘lj,l) Zz(,lj 2 Zz(,lj 3 Zz(,lj 4 a,

Z:(,zj’ D Zz(.zj 2 Zi(,zj 3 Zz(.zj 4 bj o (22)
zZ&H  ze2 ng) VA ¢, ’

Zz( 41 1) Zl(’4], 2) Zz(,4]3) Zl(j*j‘ 4) dJ

Each entity Zf"; 9 in (22) is a submatrix; the explicit form

Iz
+ & t > T
- Y Te
g — 00
*LALLLLLLLLLALLLLLLL/_LLLLLLLLLM
t3 €€
zZ =29
ty b
¥ 8 — B e on-eeZ = 2]
t
g — 00

a signal strip b crossing strip

Fig. 3 Geometrical configuration of two signal striplines periodically

loaded with crossing strips embedded 1n a one-layer medium.

of the elements is

z0(w k)= L [ dk S50k, k) (23)

with
Sz(.rj)q)(kﬂ kyn) = Frt(“ kx’ - kyn)gﬁﬁ(k)w kyn’ Zgs Zm)

'Fq/(kw kyn) (24)

where
L z forr=1,2 . z; for g=1,2
" \z, forr=34 "o lz, forg=3,4
(25a)
X forr=1,3 X for ¢=1,3
*= y forr=2,4 B= y forg=2,4.
(25b)

The determinantal equation for the propagation con-
stant k , can be solved by setting the determinant of the
coefficient matrix of (22) equal to zero:

det[Z(w. k)| =0. (26)

B. Two Symmetrical Signal Striplines Loaded with
Crossing Strips

In this section, we consider the case where two identical
signal striplines of width w, are located symmetrically at
(£ x., z;) as shown in Fig. 3.

For the even modes, J,,.(x, y) is an odd function of x,
and J, (x,y) is an even function of x. Therefore, the
surface currents can be expanded as

N, A
J(x,y)=% Z a,f1(,e)(X,)’)+}3 Z bjfz(,e)(x’Y)
J=—MN J=—M

(27a)

Ny

Ny
L(x, ) =22 ¢ fix,p)+ 9 X d,19(x.y) (27b)
=1 7=0
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where the basis functions are

HPCx ) = [P =20 m) + Py + x| eor

(28a)
(%, p) = [Ty(x = x., w) + Ty (x -|- x,,wy)] ethn

(28b)
£0(x, ) =P (x, L)(p/27)Ty(y, w,) (280)
(%, ) =Ti(x, L) Q(y,w,). (28d)

Following the same procedure as in the case of one
signal stripline by applying the Galerkin method, a deter-
minantal equation similar to (26) is obtained.

For the odd modes, J,, .(x, y) is an even function of x,
and J, (x, y) is an odd function of x. Therefore, the
surface currents are expanded as

N
J(x,p)=% Y afix,y)+y Z b f(x,y)

J=—MN Jj==N

(29a)

A
H(x,y) =2 Y ¢ fi(x, p)+ 9 Z d,fi7(x,y) (29b)
=1

where the basis functions are

(0)(" y)= [Pl(x X, W) — P(x+xc,w1)] thy,y

(30a)
fz(jo)(xa J’) = [To(x —Xe Wl) - To(x + X Wl)] e
(30b)
LP(x,y) =U(x, L)(p/27)Ty(y, w,) (30c)
)=V (x, L)Q(y.w) (30d)
where
(1/m)cos[(2j ~1) & /7],
U(é.m)= —-n/2<t<n/2’ (31a)
0, elsewhere ‘
sin[(2j —1) & /n] /{(n/2)*- €2,
V,(é,n)= ~n/2<E<n/2 1b)
0, elsewhere.

Let Ijj(kx,n) and I;;(kx,n) be the Fourier transform of
U;(x,m) and V (x, n); then

(2j=1)(=1)"cos (k.n/2)

7 (k )= 2 2 :UJ -k,
R P o TP TS R L)
(32a)
V(ky,m)= [Jo(kxn/2 (j—1/2)7)
—Jo(kxn/2+(j—1/2)w)]
=—V(~k,n). (32b)
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When k. /2 approaches +(j—1/2)x, U(kx, 1) ap-
proaches 1/(47).

C. One Signal Stripline Loaded with Crossing Strips of
Infinite Length

In this section, we consider the case where one signal
line is loaded by infinitely long crossing strips as shown in
Fig. 2 with L — co. When the crossing strips are very long
such that reflections from the ends can be neglected, we
can assume traveling waves along it. So, we investigate the
possibility of the existence of such a mode of operation
and its effect on the propagation characteristics of the
signal line.

The surface current on the signal strip is of the same
form as in the case discussed in subsection A of finite
crossing strips. For the crossing strips, we choose traveling
wave basis functions [9], [10] and some local basis func-
tions on the center to account for the effect of the presence
of the signal line. Hence, the surface currents are expanded
as

) N,
hxey)=% X aff(x,2)+) ¥ b (x,y)

J==N J=-M

(33a)

N
h(x,y) =% Z o5 (%, p)+ 7 Z d,/i(x.y) (33b)

J =

where the basis functions f{’(x, y) and f{(x, y) are the
same as fi (x,y) and f, J(x ), respectlvely The func-
tional forms of f{(x, y) and f{(x, y) are

[R,(x,h)=R,(—x,.0)|(p/27)Ty( y,w,),
1<j< N -1
P, 9) =[-8, (kx = 7/2)+iS,,(kx)
S~ ke x = 7/2) =S, (~ k,x)]

(p/27T)T0(y,WC), j=N3
(34a)
Ro(x, h)Q(y, W),
Jj=0
[R,(x,h)+ R(—x.m)|0(p,w,),
f4(f)(xa)’)= I<j<N,—-1

[~ S, (kox —7/2)+iS,,(k, x)
=S, (—k x—m/2)+iS, (—k,x)]O(y,w,)
j=N4

(34b)

where k, is assumed to be the propagation constant of a
single crossing strip of infinite length in the absence of the
signal line, R (x, k) is the local basis function with width
2h, and S, (£) is the traveling wave basis function with
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Fig. 4. The basis functions used for infinitely long crossing strips,
m=4, Ny=N,=6

travelling wave basxs fllllCthll

m /2 periods as shown in Fig. 4. The explicit forms are

sink,(h—|x— jhl)/sink h,
R,(x,h) = (j-Dh<x<(j+1)h (35a)
0, elsewhere
sin &, O0<ésma
S = 35b
n(£) {0, elsewhere. (35b)

It will be shown that only a finite number of periods of the
traveling wave basis functions are sufficient for the conver-
gence of the solution. Any increase in the number of
periods of these basis functions will have a negligible effect
on the numerical results.

Let R [k, w) and §m(kx) be the Fourier transform of
R (x,h) and S,(£); then

ke~ " (cosk h —cosk,h)

R (ko h) =~ wsink (k2 —k?)

(36a)

When the Value of k. approaches +k_, R [k, h) and
S,(k,) approach (h/2vr)e+"‘efh and +zm/4k respec-
t1ve1y
With these basis functions, the Fourier transform of the

S sy L D)"e k-] (360)

surface current J:n(kx, k,,) can be derived as

Ny
‘fl(kx’k )=xA Z a]Fl(jt)(k)wkvn)
J=—MN v
N,
+9 X bFk,k,) (37a)
J=—MN
J;(kx’k)’n) =xA Z ¢ F(t)(kx7k))n)
J=
Ny
+9 3 dFO(k, k,,) (37b)
J=0
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where F{(k,, k) is the Fourier transform of f{(x, y),
i=1,2,3, 4 The exphCJt forms are

(kx’ktn Pl(k*c’wl) (383)

FO(k,, k 8,,To (k. wy)
( yn’wc)A.'B/(kx)

( yn? c)ffélj(kx)

(38b)

x

FO(k,, k, (38¢)

)=
)=
)=
Ok k) =

(38d)

yn

where

2Rk, h),

1< j< N1
kJn(k2-k2)] (-1
cisin[ka(m+1/2)/k ]
+(=1)"sin(mwk_/k,)
—usin(k m/2k,)],

=N

Ay, (k) = (39a)

RY (k,, h),
j=0
2RO (k,, h),
1< j< N, -1
ko[ (k2=k2)] = (-1)"
-cos [k (m+1/2)/k,]
+i(-1)"
-cos(muwk,/k,)+cos(km/2k,)—i],
J=N,

A~4J(kx) =

where R{*)(k,, h) and Rﬁo)(kx, h) are the even part and
the odd part of R (K, h), respectively. It is observed that
ABJ(_ kx) = A3j(kwc)7 and A4](_ kx) = A4_1(kx)‘

Applying the Galerkin procedure with the following
testing functions:

wi, (x, ) = Pix, wy)e o (40a)
wy, (%, 9) = Ty (x, wy) e~ (40b)
wy (x, ) =R, (x, h)(p/27) Ty(y. w,)  (40c)
wi, (%, 9) =R, (x. 1)Q(y,w,) (40d)

the matrix eigenvalue equation is obtained.

IV. NUMERICAL RESULTS AND DiscussioN

By utilizing the symmetry properties of the dyadic
Green’s function, the basis functions, and the testing func-
tions, each matrix element in (22) can be reduced to an
integral over 0 < k, <co. In computing the integrals (23)
numerically, the path of integration in the complex k,



KIANG et al.: PROPAGATION PROPERTIES OF STRIPLINES

?.40 T T T

0.33
B35 X x
\/

8.30 -

T
|

= xZ_wy _1

'i
X
|
€
]

m.zs}

0.31
0.95

8.5 | N

kop/x

.20 -

0.1 - n

@.GSL \ 4

0.00 . L
0.9 8.5 1.8 15

kyp/m

2.p
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plane is deformed below the real axis to avoid the poles
corresponding to the waveguide modes [11].

Fig. 5 shows the dispersion relation for a single signal
line with crossing strips. Numerical computations were
performed with two different numbers of basis functions,
and the results were found to be the same up to three
decimal points. The basis functions used are given by (15).
For L, =23 mm, the first stopband occurs in the fre-
quency range when 0.3162 < k,p /7 < 0.3203.

Fig. 6 shows the interaction of an n = —1 Floquet mode
with a TE, (TM,) parallel-plate waveguide mode. For
frequencies above fy, k, starts to have a large imaginary
part, giving rise to a higher order stopband. However, we
are interested in operating frequencies where k, is real
within the passbands below f,, and thus the region above
f+ is of no practical importance.

Next, the effects of crossing strip length L, on the lower
and upper frequency bounds of the stopband are investi-
gated. The normalized frequency for the two bounds of the
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Fig. 7. (a) The effects of L, on the upper and lower bounds of the
stopband, ¢, =10, fy,=1,=,=02 mm, p=05 mm, w=w =
0.125 mm, N, =1, N, =0, N; =S5, N, = 4. (b) The effects of L on the
upper and lower bounds of the stopband, €, =10, #, = ¢, = ¢, = 0.2 mm,
p=10mm, w =w,=0125 mm, N, =1, N,=0, N;=5, N,=4.

stopband is presented as a function of L. The result for
p = 0.5 mm is plotted in Fig. 7(a). It is observed that both
bounds of the stopband are very sensitive to the crossing
strip length L. This behavior is repeated when L, changes
by an approximately integral number of wavelengths. This
can be explained in the following way: The crossing strips
behave like open-circuited stubs periodically loading the
signal line. The crossing strips will have capacitive or
inductive behavior depending on its length. At a certain
length of crossing strips, the behavior switches from being
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inductive (or capacitive) to capacitive (or inductive). This
switching occurs at L_= nX,, where A; is the wavelength
in the dielectric medium calculated at the center frequency.
At these lengths, the stopbands become very wide.

In Fig. 7(b), the normalized frequency of the bounds of
the stopband is plotted as a function of L, with the period
» =10 mm. Behavior similar to that in Fig. 7(a) is ob-
served, but the values of L, at which the switching of
frequency occurs are doubled.

In Fig. 8, the effects of the crossing strip width w, on the
stopband frequency bounds are investigated. The normal-
ized frequency at the bounds of the stopband is presented
for L ,=2.7 mm. As the crossing strip width becomes
smaller, the stopband becomes narrower.

In Fig. 9, we investigate the effect of the separations 7,
and 7; on the stopband while keeping ¢, constant. It is
observed that the stopband becomes smaller when the
separation is decreased, and when the separation is larger
than 0.2 mm, the upper frequency bound of the stopband
reaches a constant.

In Fig. 10, the bounds of the first stopband are plotted
as a function of the distance ¢, while fixing the separation
t, =ty = constant. It is observed that for L_=1.0 mm, the
separation ¢, affects the upper bound of the first stopband
significantly.

Fig. 11 shows the case of two coupled signal striplines in
the presence of periodic crossing strips of finite length.
The frequency bounds of the stopband are presented in
Fig. 11(a) and (b) for the even mode and the odd mode.,
respectively, with p = 0.5 mm and L_=1.7 mm. The basis
functions used are given by (27) and (29) for the even and
the odd mode, respectively. When the separation becomes
larger than L, the stopband width of the even mode
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approaches zero, but the stopband width of the odd mode
is still finite. This is because the odd mode has stronger
coupling between two signal lines than the even mode.
Fig. 12 shows the dispersion relation of a single stripline
in the presence of crossing strips of infinite length. The
basis functions used are given by (33). We' choose the
traveling wave basis functions to have three periods. The
results using seven periods are also shown for comparison,
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and it is found that the traveling wave basis function of
three periods is sufficient. The imaginary part of the
propagation constant is approximately a linear function of
frequency, and the magnitude can be as high as 1 percent
of the real part. This is due to the assumption that the
surface current along the crossing strips is a traveling
wave. Part of the power along the signal line couples to the
crossing strips, exciting a traveling wave surface current
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14.

B.1F

2.5

flowing away from the signal stripline. This traveling wave
surface current guides some power away from the signal
line and hence reduces the guided power along the signal
line.

In this case, the passband-stopband behavior which is
characteristic of periodic structures does not appear. The
wavenumber k,, has a nonzero imaginary part cver all
frequencies. This is due to the power guided by the travel-
ing wave along the crossing strips. Around k,,=nw/p,
the separation between two neighboring crossing strips is
nA /2, where A is the wavelength of the guided mode. The
power carried by the crossing strips at these frequencies is
very small because the current on the signal line has
opposite phase on the two sides of the crossing strip. Also,
in this case, the higher order waveguide mode is not
excited.

V. CONCLUSIONS

A rigorous dyadic Green’s function formulaticn for the
periodic structure is derived to study the dispersion prop-
erties of single and coupled signal lines periodically loaded
with crossing strips. The passband and stopband character-
istics are investigated when crossing strips are of finite or
infinite length.

For crossing strips of finite length, the stopband proper-
ties are mainly affected by the period, the length of cross-
ing strips, and the separation between the signal and
crossing strips. Also, at higher frequencies, higher order
stopbands occur. For crossing strips of infinite length,
attenuation along the signal line exists over the whole
frequency range due to the power guided by the traveling
wave along crossing strips.
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